Maple 2018. 2 Integration Test Results
on the problems in "7 Inverse hyperbolic functions/7.6 Inverse hyperbolic cosecant"
Test results for the 48 problems in "7.6.1 u (a+b arccsch(c x))^n.txt"
Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{x^{3}} \mathrm{~d} x
$$

Optimal (type 3, 45 leaves, 4 steps):

$$
-\frac{b c^{2} \operatorname{arccsch}(c x)}{4}+\frac{-a-b \operatorname{arccsch}(c x)}{2 x^{2}}+\frac{b c \sqrt{1+\frac{1}{c^{2} x^{2}}}}{4 x}
$$

Result (type 3, 99 leaves):

$$
c^{2}\left(-\frac{a}{2 c^{2} x^{2}}+b\left(-\frac{\operatorname{arccsch}(c x)}{2 c^{2} x^{2}}-\frac{\sqrt{c^{2} x^{2}+1}\left(\operatorname{arctanh}\left(\frac{1}{\sqrt{c^{2} x^{2}+1}}\right) c^{2} x^{2}-\sqrt{c^{2} x^{2}+1}\right)}{4 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} c^{3} x^{3}}\right)\right)
$$

Problem 5: Unable to integrate problem.

$$
\int x^{3}(a+b \operatorname{arccsch}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 91 leaves, 5 steps):

$$
\frac{b^{2} x^{2}}{12 c^{2}}+\frac{x^{4}(a+b \operatorname{arccsch}(c x))^{2}}{4}-\frac{b^{2} \ln (x)}{3 c^{4}}-\frac{b x(a+b \operatorname{arccsch}(c x)) \sqrt{1+\frac{1}{c^{2} x^{2}}}}{3 c^{3}}+\frac{b x^{3}(a+b \operatorname{arccsch}(c x)) \sqrt{1+\frac{1}{c^{2} x^{2}}}}{6 c}
$$

Result (type 8, 16 leaves):

$$
\int x^{3}(a+b \operatorname{arccsch}(c x))^{2} \mathrm{~d} x
$$

Problem 6: Unable to integrate problem.

$$
\int x^{2}(a+b \operatorname{arccsch}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 4, 148 leaves, 8 steps):
$\frac{b^{2} x}{3 c^{2}}+\frac{x^{3}(a+b \operatorname{arccsch}(c x))^{2}}{3}-\frac{2 b(a+b \operatorname{arccsch}(c x)) \operatorname{arctanh}\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}-\frac{b^{2} \operatorname{polylog}\left(2,-\frac{1}{c x}-\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}$

$$
+\frac{b^{2} \text { polylog }\left(2, \frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}+\frac{b x^{2}(a+b \operatorname{arccsch}(c x)) \sqrt{1+\frac{1}{c^{2} x^{2}}}}{3 c}
$$

Result(type 8, 16 leaves):

$$
\int x^{2}(a+b \operatorname{arccsch}(c x))^{2} \mathrm{~d} x
$$

Problem 7: Unable to integrate problem.

$$
\int x(a+b \operatorname{arccsch}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 50 leaves, 4 steps):

$$
\frac{x^{2}(a+b \operatorname{arccsch}(c x))^{2}}{2}+\frac{b^{2} \ln (x)}{c^{2}}+\frac{b x(a+b \operatorname{arccsch}(c x)) \sqrt{1+\frac{1}{c^{2} x^{2}}}}{c}
$$

Result(type 8, 14 leaves):

$$
\int x(a+b \operatorname{arccsch}(c x))^{2} \mathrm{~d} x
$$

Problem 8: Unable to integrate problem.

$$
\int(a+b \operatorname{arccsch}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 4, 108 leaves, 7 steps):
$x(a+b \operatorname{arccsch}(c x))^{2}+\frac{4 b(a+b \operatorname{arccsch}(c x)) \operatorname{arctanh}\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)}{c}+\frac{2 b^{2} \operatorname{polylog}\left(2,-\frac{1}{c x}-\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)}{c}$

$$
-\frac{2 b^{2} \text { polylog }\left(2, \frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)}{c}
$$

Result(type 8, 12 leaves):

$$
\int(a+b \operatorname{arccsch}(c x))^{2} \mathrm{~d} x
$$

Problem 9: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arccsch}(c x))^{2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 116 leaves, 6 steps):
$\frac{(a+b \operatorname{arccsch}(c x))^{3}}{3 b}-(a+b \operatorname{arccsch}(c x))^{2} \ln \left(1-\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)^{2}\right)-b(a+b \operatorname{arccsch}(c x)) \operatorname{poly} \log \left(2,\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)^{2}\right)$ $+\frac{b^{2} \operatorname{poly} \log \left(3,\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)^{2}\right)}{2}$
Result(type 8, 16 leaves):

$$
\int \frac{(a+b \operatorname{arccsch}(c x))^{2}}{x} \mathrm{~d} x
$$

Problem 10: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arccsch}(c x))^{2}}{x^{5}} \mathrm{~d} x
$$

Optimal(type 3, 114 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{b^{2}}{32 x^{4}}+\frac{3 b^{2} c^{2}}{32 x^{2}}+\frac{3 a b c^{4} \operatorname{arccsch}(c x)}{16}+\frac{3 b^{2} c^{4} \operatorname{arccsch}(c x)^{2}}{32}-\frac{(a+b \operatorname{arccsch}(c x))^{2}}{4 x^{4}}+\frac{b c(a+b \operatorname{arccsch}(c x)) \sqrt{1+\frac{1}{c^{2} x^{2}}}}{8 x^{3}} \\
& \quad-\frac{3 b c^{3}(a+b \operatorname{arccsch}(c x)) \sqrt{1+\frac{1}{c^{2} x^{2}}}}{}
\end{aligned}
$$

Result(type 8, 16 leaves):

$$
\int \frac{(a+b \operatorname{arccsch}(c x))^{2}}{x^{5}} d x
$$

Problem 11: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arccsch}(c x))^{3}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 74 leaves, 5 steps):

$$
-\frac{6 b^{2}(a+b \operatorname{arccsch}(c x))}{x}-\frac{(a+b \operatorname{arccsch}(c x))^{3}}{x}+6 b^{3} c \sqrt{1+\frac{1}{c^{2} x^{2}}}+3 b c(a+b \operatorname{arccsch}(c x))^{2} \sqrt{1+\frac{1}{c^{2} x^{2}}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{(a+b \operatorname{arccsch}(c x))^{3}}{x^{2}} \mathrm{~d} x
$$

Problem 14: Unable to integrate problem.

$$
\int(d x)^{m}(a+b \operatorname{arccsch}(c x)) \mathrm{d} x
$$

Optimal(type 5, 63 leaves, 3 steps):

$$
\frac{(d x)^{1+m}(a+b \operatorname{arccsch}(c x))}{d(1+m)}+\frac{b(d x)^{m} \text { hypergeom }\left(\left[\frac{1}{2},-\frac{m}{2}\right],\left[1-\frac{m}{2}\right],-\frac{1}{c^{2} x^{2}}\right)}{c m(1+m)}
$$

Result(type 8, 16 leaves):

$$
\int(d x)^{m}(a+b \operatorname{arccsch}(c x)) \mathrm{d} x
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{(e x+d)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 94 leaves, 7 steps):

$$
\frac{b \operatorname{arccsch}(c x)}{d e}+\frac{-a-b \operatorname{arccsch}(c x)}{e(e x+d)}+\frac{b \operatorname{arctanh}\left(\frac{c^{2} d-\frac{e}{x}}{c \sqrt{c^{2} d^{2}+e^{2}} \sqrt{1+\frac{1}{c^{2} x^{2}}}}\right)}{d \sqrt{c^{2} d^{2}+e^{2}}}
$$

Result(type 3, 207 leaves):

$$
-\frac{c a}{(c e x+d c) e}-\frac{c b \operatorname{arccsch}(c x)}{(c e x+d c) e}+\frac{b \sqrt{c^{2} x^{2}+1} \operatorname{arctanh}\left(\frac{1}{\sqrt{c^{2} x^{2}+1}}\right)}{c e \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} x d}-\frac{b \sqrt{c^{2} x^{2}+1} \ln \left(\frac{2\left(\sqrt{\frac{c^{2} d^{2}+e^{2}}{e^{2}}} \sqrt{c^{2} x^{2}+1} e-d c^{2} x+e\right)}{c e x+d c}\right)}{c e \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}} x d \sqrt{\frac{c^{2} d^{2}+e^{2}}{e^{2}}}}}
$$

Problem 18: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)^{3 / 2}(a+b \operatorname{arccsch}(c x)) \mathrm{d} x
$$

Optimal(type 4, 415 leaves, 22 steps):
$\frac{2(e x+d)^{5 / 2}(a+b \operatorname{arccsch}(c x))}{5 e}+\frac{4 b e\left(c^{2} x^{2}+1\right) \sqrt{e x+d}}{15 c^{3} x \sqrt{1+\frac{1}{c^{2} x^{2}}}}+\frac{28 b c d \text { EllipticE }\left(\frac{\left.\sqrt{1-x \sqrt{-c^{2}} \sqrt{2}}, \sqrt{2}-\frac{2 e \sqrt{-c^{2}}}{c^{2} d-e \sqrt{-c^{2}}}\right) \sqrt{e x+d} \sqrt{c^{2} x^{2}+1}}{\sqrt{\frac{e x+d}{d+\frac{e}{\sqrt{-c^{2}}}}}} \sqrt{\sqrt{c^{2} x^{2}} \sqrt{\left.\frac{1}{2}\right)^{3 / 2} x \sqrt{1+\frac{1}{2}}}}\right.}{\sqrt{\sqrt{2}}}$

$$
\begin{aligned}
& -\frac{4 b c\left(2 c^{2} d^{2}-e^{2}\right) \text { EllipticF }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, \sqrt{-\frac{2 e \sqrt{-c^{2}}}{c^{2} d-e \sqrt{-c^{2}}}}\right) \sqrt{c^{2} x^{2}+1} \sqrt{\frac{e x+d}{d+\frac{e}{\sqrt{-c^{2}}}}}}{15\left(-c^{2}\right)^{5 / 2} x \sqrt{1+\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}} \\
& -\frac{4 b d^{3} \text { EllipticPi }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, 2, \sqrt{2} \sqrt{\frac{e}{d \sqrt{-c^{2}}+e}}\right) \sqrt{c^{2} x^{2}+1} \sqrt{\frac{(e x+d) \sqrt{-c^{2}}}{d \sqrt{-c^{2}}+e}}}{5 c e x \sqrt{1+\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}}
\end{aligned}
$$

Result(type 4, 1938 leaves):

$$
\begin{aligned}
& \frac{1}{e}\left(2 \left(\frac{(e x+d)^{5 / 2} a}{5}+b\left(\frac{(e x+d)^{5 / 2} \operatorname{arccsch}(c x)}{5}+(2(\right.\right.\right. \\
& \\
& -\mathrm{I} \sqrt{-\frac{\mathrm{I}(e x+d) c e+(e x+d) c^{2} d-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}} \sqrt{\frac{\mathrm{I}(e x+d) c e-(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}} \text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}\right.
\end{aligned}
$$

$$
\left.\sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) e^{3}-\sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}(e x+d)^{5 / 2} c^{3} d-2 \mathrm{I} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}(e x+d)^{3 / 2} c^{2} d e
$$

$$
-9 \sqrt{-\frac{\mathrm{I}(e x+d) c e+(e x+d) c^{2} d-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}} \sqrt{\frac{\mathrm{I}(e x+d) c e-(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}} \text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}},\right.
$$

$$
\left.\sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) c^{3} d^{3}
$$

$+7 \sqrt{-\frac{\mathrm{I}(e x+d) c e+(e x+d) c^{2} d-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}} \sqrt{\frac{\mathrm{I}(e x+d) c e-(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}$ EllipticE $\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}\right.$,

$$
\begin{aligned}
& \left.\sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) c^{3} d^{3}+\mathrm{I} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}(e x+d)^{5 / 2} c^{2} e \\
& +3 \sqrt{-\frac{\mathrm{I}(e x+d) c e+(e x+d) c^{2} d-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}} \sqrt{\frac{\mathrm{I}(e x+d) c e-(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}} \text { EllipticPi } \sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \\
& \left.\frac{c^{2} d^{2}+e^{2}}{(\mathrm{I} e+d c) c d}, \frac{\sqrt{-\frac{(\mathrm{I} e-d c) c}{c^{2} d^{2}+e^{2}}}}{\sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}}\right) c^{3} d^{3}
\end{aligned}
$$

$$
+2 \mathrm{I} \sqrt{-\frac{\mathrm{I}(e x+d) c e+(e x+d) c^{2} d-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}} \sqrt{\frac{\mathrm{I}(e x+d) c e-(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}} \text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}},\right.
$$

$$
\left.\sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) c^{2} d^{2} e+2 \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}(e x+d)^{3 / 2} c^{3} d^{2}+\mathrm{I} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}} \sqrt{e x+d} e^{3}-\sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}} \sqrt{e x+d} c^{3} d^{3}
$$

$$
+\mathrm{I} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}} \sqrt{e x+d} c^{2} d^{2} e
$$

$$
-6 \sqrt{-\frac{\mathrm{I}(e x+d) c e+(e x+d) c^{2} d-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}} \sqrt{\frac{\mathrm{I}(e x+d) c e-(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}} \text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}},\right.
$$

$$
\begin{aligned}
& \left.\sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) c d e^{2} \\
& +7 \sqrt{-\frac{\mathrm{I}(e x+d) c e+(e x+d) c^{2} d-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}} \sqrt{\frac{\mathrm{I}(e x+d) c e-(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}} \text { EllipticE }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}},\right. \\
& \left.\sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) c d e^{2} \\
& -3 \mathrm{I} \sqrt{-\frac{\mathrm{I}(e x+d) c e+(e x+d) c^{2} d-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}} \sqrt{\frac{\mathrm{I}(e x+d) c e-(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}} \text { EllipticPi } \sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \\
& \left.\left.\frac{c^{2} d^{2}+e^{2}}{(\mathrm{I} e+d c) c d}, \frac{\sqrt{-\frac{(\mathrm{I} e-d c) c}{c^{2} d^{2}+e^{2}}}}{\sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}}\right) c^{2} d^{2} e-\sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}} \sqrt{e x+d} c d e^{2}\right) / / \\
& \left.\left(15 c^{3} \sqrt{\frac{(e x+d)^{2} c^{2}-2(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} x^{2} e^{2}}} x \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}(\mathrm{I} e-d c)\right)\right)
\end{aligned}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \operatorname{arccsch}(c x))}{\sqrt{e x+d}} \mathrm{~d} x
$$

Optimal(type 4, 407 leaves, 14 steps):
$\frac{2(e x+d)^{3 / 2}(a+b \operatorname{arccsch}(c x))}{3 e^{2}}-\frac{2 d(a+b \operatorname{arccsch}(c x)) \sqrt{e x+d}}{e^{2}}$

$$
+\frac{8 b d^{2} \text { EllipticPi }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, 2, \sqrt{2} \sqrt{\frac{e}{d \sqrt{-c^{2}}+e}}\right) \sqrt{c^{2} x^{2}+1} \sqrt{\frac{(e x+d) \sqrt{-c^{2}}}{d \sqrt{-c^{2}}+e}}}{3 c e^{2} x \sqrt{1+\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}}
$$

$$
+\frac{4 b c \text { EllipticE }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, \sqrt{\left.-\frac{2 e \sqrt{-c^{2}}}{c^{2} d-e \sqrt{-c^{2}}}\right) \sqrt{e x+d} \sqrt{c^{2} x^{2}+1}}\right.}{3\left(-c^{2}\right)^{3 / 2} e x \sqrt{1+\frac{1}{c^{2} x^{2}}} \sqrt{\frac{c^{2}(e x+d)}{c^{2} d-e \sqrt{-c^{2}}}}}
$$

$$
-\frac{8 b c d \text { EllipticF }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, \sqrt{-\frac{2 e \sqrt{-c^{2}}}{c^{2} d-e \sqrt{-c^{2}}}}\right) \sqrt{c^{2} x^{2}+1} \sqrt{\frac{c^{2}(e x+d)}{c^{2} d-e \sqrt{-c^{2}}}}}{3\left(-c^{2}\right)^{3 / 2} e x \sqrt{1+\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}}
$$

Result(type 4, 867 leaves):

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
e^{2}
\end{array}\right. \\
& -\left(2 \sqrt{\left.\frac{(e x+d)^{3 / 2}}{3}-d \sqrt{e x+d}\right)+b\left(\frac{\operatorname{arccsch}(c x)(e x+d)^{3} / 2}{3}-\operatorname{arccsch}(c x) d \sqrt{e x+d}\right.}\right. \\
& - \text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I}(e x+d c) c}{c^{2} d^{2}+e^{2}}}, \sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) c^{2} d^{2}-\operatorname{EllipticE}\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right)
\end{aligned}
$$

$$
\text { - } 2 \text { I EllipticPi }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \frac{c^{2} d^{2}+e^{2}}{(\mathrm{I} e+d c) c d}, \frac{\sqrt{-\frac{(\mathrm{I} e-d c) c}{c^{2} d^{2}+e^{2}}}}{\sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}}\right) c d e+2 \text { EllipticPi }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \frac{c^{2} d^{2}}{\left(\mathrm{I} e+e^{2}\right.}\right.
$$

$$
\left.\left.\left.\begin{array}{l}
\left.\frac{\sqrt{-\frac{(\mathrm{I} e-d c) c}{c^{2} d^{2}+e^{2}}}}{\sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}}\right) c^{2} d^{2}+\text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) e^{2}-\text { EllipticE }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}\right. \\
\sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}
\end{array}\right) e^{2}\right) \quad\left(\quad\left(3 c^{2} \sqrt{\frac{(e x+d)^{2} c^{2}-2(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} x^{2} e^{2}}} x \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}(\mathrm{I} e-d c)\right)\right)\right) .
$$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \operatorname{arccsch}(c x))}{(e x+d)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 430 leaves, 16 steps):

$$
\begin{gathered}
\frac{2(e x+d)^{3 / 2}(a+b \operatorname{arccsch}(c x))}{3 e^{3}}-\frac{2 d^{2}(a+b \operatorname{arccsch}(c x))}{e^{3} \sqrt{e x+d}}-\frac{4 d(a+b \operatorname{arccsch}(c x)) \sqrt{e x+d}}{e^{3}} \\
+\frac{32 b d^{2} \text { EllipticPi }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, 2, \sqrt{2} \sqrt{\frac{e}{d \sqrt{-c^{2}}+e}}\right) \sqrt{c^{2} x^{2}+1} \sqrt{\frac{(e x+d) \sqrt{-c^{2}}}{d \sqrt{-c^{2}}+e}}}{3 c e^{3} x \sqrt{1+\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}}
\end{gathered}
$$

$$
+\left(\frac{4 b c \text { EllipticE }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, \sqrt{-\frac{2 e \sqrt{-c^{2}}}{c^{2} d-e \sqrt{-c^{2}}}}\right) \sqrt{e x+d} \sqrt{c^{2} x^{2}+1}}{}\right.
$$

$$
3\left(-c^{2}\right)^{3 / 2} e^{2} x \sqrt{1+\frac{1}{c^{2} x^{2}}} \sqrt{\frac{c^{2}(e x+d)}{c^{2} d-e \sqrt{-c^{2}}}}
$$

$$
-20 b c d \text { EllipticF }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, \sqrt{-\frac{2 e \sqrt{-c^{2}}}{c^{2} d-e \sqrt{-c^{2}}}}\right) \sqrt{c^{2} x^{2}+1} \sqrt{\frac{c^{2}(e x+d)}{c^{2} d-e \sqrt{-c^{2}}}}
$$

$$
3\left(-c^{2}\right)^{3 / 2} e^{2} x \sqrt{1+\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}
$$

Result(type 4, 895 leaves):

$$
\begin{aligned}
& \frac{1}{e^{3}}\left(2\left(\frac{(e x+d)^{3 / 2}}{3}-2 d \sqrt{e x+d}-\frac{d^{2}}{\sqrt{e x+d}}\right)+b\left(\frac{\operatorname{arccsch}(c x)(e x+d)^{3} / 2}{3}-2 \operatorname{arccsch}(c x) d \sqrt{e x+d}-\frac{\operatorname{arccsch}(c x) d^{2}}{\sqrt{e x+d}}\right.\right. \\
& -\left(2 \sqrt { - \frac { \mathrm { I } (e x + d) c e + (e x + d) c ^ { 2 } d - c ^ { 2 } d ^ { 2 } - e ^ { 2 } } { c ^ { 2 } d ^ { 2 } + e ^ { 2 } } } \sqrt { \frac { \mathrm { I } (e x + d) c e - (e x + d) c ^ { 2 } d + c ^ { 2 } d ^ { 2 } + e ^ { 2 } } { c ^ { 2 } d ^ { 2 } + e ^ { 2 } } } \left(5 \text { IEllipticF } \left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \sqrt{-\frac{2 \mathrm{I} c d e-c^{2}}{c^{2} d^{2}+}}\right.\right.\right. \\
& \left.\sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) c^{2} d^{2}-\operatorname{EllipticE}\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) c^{2} d^{2}-8 \mathrm{IEllipticPi}\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}},\right. \\
& \left.\frac{c^{2} d^{2}+e^{2}}{(\mathrm{I} e+d c) c d}, \frac{\sqrt{-\frac{(\mathrm{I} e-d c) c}{c^{2} d^{2}+e^{2}}}}{\sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}}\right) c d e+8 \text { EllipticPi }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \frac{c^{2} d^{2}+e^{2}}{(\mathrm{I} e+d c) c d}, \frac{\sqrt{-\frac{(\mathrm{I} e-d c) c}{c^{2} d^{2}+e^{2}}}}{\sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}}\right) c^{2} d^{2} \\
& \left.+ \text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) e^{2}-\operatorname{EllipticE}\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \sqrt{-\frac{2 \mathrm{I} c d e-c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\right) e^{2}\right) \\
& \left.\left.\left(3 c^{2} \sqrt{\frac{(e x+d)^{2} c^{2}-2(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} x^{2} e^{2}}} x \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}(\mathrm{I} e-d c)\right)\right)\right)
\end{aligned}
$$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{(e x+d)^{3 / 2}} \mathrm{~d} x
$$

$$
-\frac{2(a+b \operatorname{arccsch}(c x))}{e \sqrt{e x+d}}+\frac{4 b \text { EllipticPi }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, 2, \sqrt{2} \sqrt{\frac{e}{d \sqrt{-c^{2}}+e}}\right) \sqrt{c^{2} x^{2}+1} \sqrt{\frac{(e x+d) \sqrt{-c^{2}}}{d \sqrt{-c^{2}}+e}}}{\operatorname{cex} \sqrt{1+\frac{1}{c^{2} x^{2}} \sqrt{e x+d}}}
$$

Result(type 4, 327 leaves):

$$
\frac{1}{e}\left(2\left(-\frac{a}{\sqrt{e x+d}}+b\right)-\frac{\operatorname{arccsch}(c x)}{\sqrt{e x+d}}\right.
$$

$$
+\frac{1}{c \sqrt{\frac{(e x+d)^{2} c^{2}-2(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} x^{2} e^{2}}} x d \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}} \sqrt[{2 \sqrt{-\frac{\mathrm{I}(e x+d) c e+(e x+d) c^{2} d-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}}]{ }
$$

$$
\left.\left.\left.\sqrt{\frac{\mathrm{I}(e x+d) c e-(e x+d) c^{2} d+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}} \operatorname{EllipticPi}\left(\sqrt{e x+d} \sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}, \frac{c^{2} d^{2}+e^{2}}{(\mathrm{I} e+d c) c d}, \frac{\sqrt{-\frac{(\mathrm{I} e-d c) c}{c^{2} d^{2}+e^{2}}}}{\sqrt{\frac{(\mathrm{I} e+d c) c}{c^{2} d^{2}+e^{2}}}}\right)\right)\right)\right)()
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \operatorname{arccsch}(c x))}{(e x+d)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 496 leaves, 25 steps):

$$
\begin{gathered}
-\frac{2 d^{2}(a+b \operatorname{arccsch}(c x))}{3 e^{3}(e x+d)^{3 / 2}}+\frac{4 d(a+b \operatorname{arccsch}(c x))}{e^{3} \sqrt{e x+d}}-\frac{4 b d\left(c^{2} x^{2}+1\right)}{3 c e\left(c^{2} d^{2}+e^{2}\right) x \sqrt{1+\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}}+\frac{2(a+b \operatorname{arccsch}(c x)) \sqrt{e x+d}}{e^{3}} \\
-\frac{32 b d \text { EllipticPi }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, 2, \sqrt{2} \sqrt{\frac{e}{d \sqrt{-c^{2}}+e}}\right) \sqrt{c^{2} x^{2}+1} \sqrt{\frac{(e x+d) \sqrt{-c^{2}}}{d \sqrt{-c^{2}}+e}}}{3 c e^{3} x \sqrt{1+\frac{1}{c^{2} x^{2}} \sqrt{e x+d}}}
\end{gathered}
$$

$$
\begin{aligned}
& \left.+\frac{4 b d \text { EllipticE }\left(\frac{\sqrt{1-x \sqrt{-c^{2}}} \sqrt{2}}{2}, \sqrt{-\frac{2 e \sqrt{-c^{2}}}{c^{2} d-e \sqrt{-c^{2}}}}\right) \sqrt{-c^{2}} \sqrt{e x+d} \sqrt{c^{2} x^{2}+1}}{3 c e^{2}\left(c^{2} d^{2}+e^{2}\right) x \sqrt{1+\frac{1}{c^{2} x^{2}} \sqrt{\frac{c^{2}(e x+d)}{c^{2} d-e \sqrt{-c^{2}}}}}}+\begin{array}{l}
\left(-c^{2}\right)^{3 / 2} e^{2} x \sqrt{1+\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}
\end{array}\right) \sqrt{\frac{c^{2} d-e \sqrt{c^{2} x^{2}+1}}{\frac{2 e \sqrt{-c^{2}}}{\frac{c^{2}(e x+d)}{c^{2} d-e \sqrt{-c^{2}}}}}}
\end{aligned}
$$

Result(type ?, 2496 leaves): Display of huge result suppressed!
Problem 28: Unable to integrate problem.

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 4, 485 leaves, 19 steps):

$$
\left.(a+b \operatorname{arccsch}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)-\frac{(a+b \operatorname{arccsch}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}{\left(1+\frac{1}{2}\right.}\right)
$$

$$
+\frac{(a+b \operatorname{arccsch}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}-\frac{(a+b \operatorname{arccsch}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}
$$

$$
-\frac{b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}+\frac{b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}
$$

$$
-\frac{b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}+\frac{b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{e x^{2}+d} \mathrm{~d} x
$$

Problem 29: Unable to integrate problem.

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{x\left(e x^{2}+d\right)} \mathrm{d} x
$$

Optimal(type 4, 463 leaves, 19 steps):
$\frac{(a+b \operatorname{arccsch}(c x))^{2}}{2 b d}-\frac{(a+b \operatorname{arccsch}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}{2 d}-\frac{(a+b \operatorname{arccsch}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}{2 d}$
$-\frac{(a+b \operatorname{arccsch}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{2 d}-\frac{(a+b \operatorname{arccsch}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{2 d}$
$-\frac{b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}{2 d}-\frac{b \operatorname{polylog}\left(2, \frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}{2 d}$
$-\frac{b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{2 d}-\frac{b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{2 d}$
Result(type 8, 23 leaves):

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{x\left(e x^{2}+d\right)} \mathrm{d} x
$$

Problem 30: Unable to integrate problem.

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{x^{2}\left(e x^{2}+d\right)} \mathrm{d} x
$$

Optimal(type 4, 524 leaves, 24 steps):
$-\frac{a}{d x}-\frac{b \operatorname{arccsch}(c x)}{d x}+\frac{(a+b \operatorname{arccsch}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}}$

$$
\begin{aligned}
& -\frac{\left.(a+b \operatorname{arccsch}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right) \sqrt{e}\right)}{2(-d)^{3 / 2}}+\frac{(a+b \operatorname{arccsch}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}} \\
& -\frac{\left.(a+b \operatorname{arccsch}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right) \sqrt{e}\right) \quad b \operatorname{polylog}\left(2,-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}}-\frac{2(-d)^{3 / 2}}{} \\
& +\frac{b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}}-\frac{b \operatorname{polylog}\left(2,-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}} \\
& +\frac{b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}}+\frac{b c \sqrt{1+\frac{1}{c^{2} x^{2}}}}{d}
\end{aligned}
$$

Result(type 8, 23 leaves):

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{x^{2}\left(e x^{2}+d\right)} \mathrm{d} x
$$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \operatorname{arccsch}(c x))}{\left(e x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 180 leaves, 8 steps):

$$
\frac{-a-b \operatorname{arccsch}(c x)}{4 e\left(e x^{2}+d\right)^{2}}+\frac{b c x \arctan \left(\sqrt{-c^{2} x^{2}-1}\right)}{4 d^{2} e \sqrt{-c^{2} x^{2}}}+\frac{b c\left(3 c^{2} d-2 e\right) x \operatorname{arctanh}\left(\frac{\sqrt{e} \sqrt{-c^{2} x^{2}-1}}{\sqrt{c^{2} d-e}}\right)}{8 d^{2}\left(c^{2} d-e\right)^{3 / 2} \sqrt{e} \sqrt{-c^{2} x^{2}}}+\frac{b c x \sqrt{-c^{2} x^{2}-1}}{8 d\left(c^{2} d-e\right)\left(e x^{2}+d\right) \sqrt{-c^{2} x^{2}}}
$$

Result(type 3, 1883 leaves):

$$
\begin{aligned}
& -\frac{c^{4} a}{4 e\left(c^{2} e x^{2}+c^{2} d\right)^{2}}-\frac{c^{4} b \operatorname{arccsch}(c x)}{4 e\left(c^{2} e x^{2}+c^{2} d\right)^{2}}-\frac{c^{3} b \sqrt{c^{2} x^{2}+1} x \operatorname{arctanh}\left(\frac{1}{\sqrt{c^{2} x^{2}+1}}\right) e}{4 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} d\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right)} \\
& c^{3} b \sqrt{c^{2} x^{2}+1} \operatorname{arctanh}\left(\frac{1}{\sqrt{c^{2} x^{2}+1}}\right) \\
& 4 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} x\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right) \\
& \left.+\frac{3 c^{3} b \sqrt{c^{2} x^{2}+1} x \ln \left(-\frac{2\left(\sqrt{-\frac{c^{2} d-e}{e}} \sqrt{c^{2} x^{2}+1} e+\sqrt{-c^{2} d e} c x+e\right)}{16 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} d \sqrt{-\frac{c^{2} d-e}{e}}\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right.}\right) e}{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right) . \\
& \left.+\frac{3 c^{3} b \sqrt{c^{2} x^{2}+1} \ln \left(-\frac{2\left(\sqrt{-\frac{c^{2} d-e}{e}} \sqrt{c^{2} x^{2}+1} e+\sqrt{-c^{2} d e} c x+e\right)}{16 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} x \sqrt{-\frac{c^{2} d-e}{e}}\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right.}\right)}{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right) . \\
& \left.+\frac{3 c^{3} b \sqrt{c^{2} x^{2}+1} x \ln \left(\frac{2\left(\sqrt{-\frac{c^{2} d-e}{e}} \sqrt{c^{2} x^{2}+1} e-\sqrt{-c^{2} d e} c x+e\right)}{16 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} d \sqrt{-\frac{c^{2} d-e}{e}}\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right.}\right) e}{c c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right) \quad ~(\\
& \left.+\frac{3 c^{3} b \sqrt{c^{2} x^{2}+1} \ln \left(\frac{2\left(\sqrt{-\frac{c^{2} d-e}{e}} \sqrt{c^{2} x^{2}+1} e-\sqrt{-c^{2} d e} c x+e\right)}{16 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} x \sqrt{-\frac{c^{2} d-e}{e}}\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right.}\right)}{\left(c c^{2} d e\right.}\right)\left(c e x+\sqrt{-c^{2} d e}\right) \quad \\
& +\frac{c b \sqrt{c^{2} x^{2}+1} x \operatorname{arctanh}\left(\frac{1}{\sqrt{c^{2} x^{2}+1}}\right) e^{2}}{4 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} d^{2}\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right)}+\frac{c b \sqrt{c^{2} x^{2}+1} \operatorname{arctanh}\left(\frac{1}{\sqrt{c^{2} x^{2}+1}}\right) e}{4 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} x d\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{c^{3} b x e}{8 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} d\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right)}-\frac{c b e}{8 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} x d\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right)} \\
& -c b \sqrt{c^{2} x^{2}+1} x \ln \left(-\frac{2\left(\sqrt{-\frac{c^{2} d-e}{e}} \sqrt{c^{2} x^{2}+1} e+\sqrt{-c^{2} d e} c x+e\right)}{-c e x+\sqrt{-c^{2} d e}}\right) e^{2} \\
& 8 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} d^{2} \sqrt{-\frac{c^{2} d-e}{e}}\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right) \\
& \left.-\frac{c b \sqrt{c^{2} x^{2}+1} \ln \left(-\frac{2\left(\sqrt{-\frac{c^{2} d-e}{e}} \sqrt{c^{2} x^{2}+1} e+\sqrt{-c^{2} d e} c x+e\right)}{8 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} x d \sqrt{-\frac{c^{2} d-e}{e}}\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right.}\right) e}{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right) . \\
& \left.-\frac{c b \sqrt{c^{2} x^{2}+1} x \ln \left(\frac{2\left(\sqrt{-\frac{c^{2} d-e}{e}} \sqrt{c^{2} x^{2}+1} e-\sqrt{-c^{2} d e} c x+e\right)}{8 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} d^{2} \sqrt{-\frac{c^{2} d-e}{e}}\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right.}\right) e^{2}}{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right) \quad \\
& -c b \sqrt{c^{2} x^{2}+1} \ln \left(\frac{2\left(\sqrt{-\frac{c^{2} d-e}{e}} \sqrt{c^{2} x^{2}+1} e-\sqrt{-c^{2} d e} c x+e\right)}{c e x+\sqrt{-c^{2} d e}}\right) e \\
& 8 \sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} x d \sqrt{-\frac{c^{2} d-e}{e}}\left(c^{2} d-e\right)\left(-c e x+\sqrt{-c^{2} d e}\right)\left(c e x+\sqrt{-c^{2} d e}\right)
\end{aligned}
$$

Problem 32: Unable to integrate problem.

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{\left(e x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 984 leaves, 81 steps):

$$
\frac{b e \operatorname{arctanh}\left(\frac{c^{2} d-\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d-e} \sqrt{1+\frac{1}{c^{2} x^{2}}}}\right)}{16 d^{5 / 2}\left(c^{2} d-e\right)^{3 / 2}}+\frac{b e \operatorname{arctanh}\left(\frac{c^{2} d+\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d-e} \sqrt{1+\frac{1}{c^{2} x^{2}}}}\right)}{16 d^{5 / 2}\left(c^{2} d-e\right)^{3 / 2}}+\frac{5 b \operatorname{arctanh}\left(\frac{c^{2} d-\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d-e} \sqrt{1+\frac{1}{c^{2} x^{2}}}}\right)}{16 d^{5 / 2} \sqrt{c^{2} d-e}}
$$

$$
+\frac{5 b \operatorname{arctanh}\left(\frac{c^{2} d+\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d-e} \sqrt{1+\frac{1}{c^{2} x^{2}}}}\right)}{16 d^{5 / 2} \sqrt{c^{2} d-e}}+\frac{3(a+b \operatorname{arccsch}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}
$$

$$
-\frac{3(a+b \operatorname{arccsch}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}+\frac{3(a+b \operatorname{arccsch}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}
$$

$$
-\frac{3(a+b \operatorname{arccsch}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{3 b \operatorname{polylog}\left(2,-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}
$$

$$
+\frac{3 b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{-c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}-\frac{3 b \operatorname{polylog}\left(2,-\frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}
$$

$$
+\frac{3 b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{-c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}+\frac{(a+b \operatorname{arccsch}(c x)) \sqrt{e}}{16(-d)^{3 / 2}\left(-\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)^{2}}-\frac{5(a+b \operatorname{arccsch}(c x))}{16 d^{2}\left(-\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)}
$$

$$
-\frac{(a+b \operatorname{arccsch}(c x)) \sqrt{e}}{16(-d)^{3 / 2}\left(\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)^{2}}+\frac{5(a+b \operatorname{arccsch}(c x))}{16 d^{2}\left(\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)}-\frac{b c \sqrt{e} \sqrt{1+\frac{1}{c^{2} x^{2}}}}{16(-d)^{3 / 2}\left(c^{2} d-e\right)\left(-\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)}
$$

$$
-\frac{b c \sqrt{e} \sqrt{1+\frac{1}{c^{2} x^{2}}}}{16(-d)^{3 / 2}\left(c^{2} d-e\right)\left(\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)}
$$

Result(type 8, 20 leaves):

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{\left(e x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Problem 33: Unable to integrate problem.

$$
\int x^{5}(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 353 leaves, 12 steps):
$\frac{d^{2}\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccsch}(c x))}{3 e^{3}}-\frac{2 d\left(e x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccsch}(c x))}{5 e^{3}}+\frac{\left(e x^{2}+d\right)^{7 / 2}(a+b \operatorname{arccsch}(c x))}{7 e^{3}}$

$$
\begin{aligned}
& +\frac{b\left(105 d^{3} c^{6}+35 c^{4} d^{2} e+63 c^{2} d e^{2}-75 e^{3}\right) x \arctan \left(\frac{\sqrt{e} \sqrt{-c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{1680 c^{6} e^{5 / 2} \sqrt{-c^{2} x^{2}}}+\frac{8 b c d^{7 / 2} x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{-c^{2} x^{2}-1}}\right)}{105 e^{3} \sqrt{-c^{2} x^{2}}} \\
& -\frac{b\left(29 c^{2} d+25 e\right) x\left(e x^{2}+d\right)^{3 / 2} \sqrt{-c^{2} x^{2}-1}}{840 c^{3} e^{2} \sqrt{-c^{2} x^{2}}}+\frac{b x\left(e x^{2}+d\right)^{5 / 2} \sqrt{-c^{2} x^{2}-1}}{42 c e^{2} \sqrt{-c^{2} x^{2}}}-\frac{b\left(23 c^{4} d^{2}-12 c^{2} d e-75 e^{2}\right) x \sqrt{-c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{1680 c^{5} e^{2} \sqrt{-c^{2} x^{2}}}
\end{aligned}
$$

Result(type 8, 23 leaves):

$$
\int x^{5}(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Problem 34: Unable to integrate problem.

$$
\int x^{3}(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d} d x
$$

Optimal(type 3, 254 leaves, 11 steps):

$$
-\frac{d\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccsch}(c x))}{3 e^{2}}+\frac{\left(e x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccsch}(c x))}{5 e^{2}}-\frac{b\left(15 c^{4} d^{2}+10 c^{2} d e-9 e^{2}\right) x \arctan \left(\frac{\sqrt{e} \sqrt{-c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{120 c^{4} e^{3 / 2} \sqrt{-c^{2} x^{2}}}
$$

$$
-\frac{2 b c d^{5 / 2} x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{-c^{2} x^{2}-1}}\right)}{15 e^{2} \sqrt{-c^{2} x^{2}}}+\frac{b x\left(e x^{2}+d\right)^{3 / 2} \sqrt{-c^{2} x^{2}-1}}{20 c e \sqrt{-c^{2} x^{2}}}+\frac{b\left(c^{2} d-9 e\right) x \sqrt{-c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{120 c^{3} e \sqrt{-c^{2} x^{2}}}
$$

Result(type 8, 23 leaves):

$$
\int x^{3}(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Problem 35: Unable to integrate problem.

$$
\int x(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 167 leaves, 9 steps):

$$
\frac{\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccsch}(c x))}{3 e}+\frac{b c d^{3 / 2} x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{-c^{2} x^{2}-1}}\right)}{3 e \sqrt{-c^{2} x^{2}}}+\frac{b\left(3 c^{2} d-e\right) x \arctan \left(\frac{\sqrt{e \sqrt{-c^{2} x^{2}-1}}}{c \sqrt{e x^{2}+d}}\right)}{6 c^{2} \sqrt{e} \sqrt{-c^{2} x^{2}}}+\frac{b x \sqrt{-c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{6 c \sqrt{-c^{2} x^{2}}}
$$

Result(type 8, 21 leaves):

$$
\int x(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Problem 38: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 413 leaves, 8 steps):

$$
-\frac{\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccsch}(c x))}{3 d x^{3}}-\frac{2 b c^{3}\left(c^{2} d-2 e\right) x^{2} \sqrt{e x^{2}+d}}{9 d \sqrt{-c^{2} x^{2}} \sqrt{-c^{2} x^{2}-1}}-\frac{2 b c\left(c^{2} d-2 e\right) \sqrt{-c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{9 d \sqrt{-c^{2} x^{2}}}+\frac{b c \sqrt{-c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{9 x^{2} \sqrt{-c^{2} x^{2}}}
$$

$$
+\frac{\left.2 b c^{2}\left(c^{2} d-2 e\right) x \sqrt{\frac{1}{c^{2} x^{2}+1}} \sqrt{c^{2} x^{2}+1} \text { EllipticE } \frac{c x}{\sqrt{c^{2} x^{2}+1}}, \sqrt{1-\frac{e}{c^{2} d}}\right) \sqrt{e x^{2}+d}}{9 d \sqrt{-c^{2} x^{2}} \sqrt{-c^{2} x^{2}-1} \sqrt{\frac{e x^{2}+d}{d\left(c^{2} x^{2}+1\right)}}}
$$

$$
-\frac{b\left(c^{2} d-3 e\right) e x \sqrt{\frac{1}{c^{2} x^{2}+1}} \sqrt{c^{2} x^{2}+1} \text { EllipticF }\left(\frac{c x}{\sqrt{c^{2} x^{2}+1}}, \sqrt{1-\frac{e}{c^{2} d}}\right) \sqrt{e x^{2}+d}}{9 d^{2} \sqrt{-c^{2} x^{2}} \sqrt{-c^{2} x^{2}-1} \sqrt{\frac{e x^{2}+d}{d\left(c^{2} x^{2}+1\right)}}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d}}{x^{4}} \mathrm{~d} x
$$

Problem 42: Unable to integrate problem.

$$
\int \frac{x^{5}(a+b \operatorname{arccsch}(c x))}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 216 leaves, 10 steps):

$$
\begin{aligned}
& \frac{\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccsch}(c x))}{3 e^{3}}-\frac{b\left(9 c^{2} d+e\right) x \arctan \left(\frac{\sqrt{e} \sqrt{-c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{6 c^{2} e^{5 / 2} \sqrt{-c^{2} x^{2}}}-\frac{8 b c d^{3 / 2} x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{-c^{2} x^{2}-1}}\right)}{3 e^{3} \sqrt{-c^{2} x^{2}}}-\frac{d^{2}(a+b \operatorname{arccsch}(c x))}{e^{3} \sqrt{e x^{2}+d}} \\
& \quad-\frac{2 d(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d}}{e^{3}}+\frac{b x \sqrt{-c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{6 c e^{2} \sqrt{-c^{2} x^{2}}}
\end{aligned}
$$

Result(type 8, 23 leaves):

$$
\int \frac{x^{5}(a+b \operatorname{arccsch}(c x))}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int \frac{x^{3}(a+b \operatorname{arccsch}(c x))}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 136 leaves, 9 steps):

$$
\frac{b x \arctan \left(\frac{\sqrt{e} \sqrt{-c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{e^{3 / 2} \sqrt{-c^{2} x^{2}}}+\frac{2 b c x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{-c^{2} x^{2}-1}}\right) \sqrt{d}}{e^{2} \sqrt{-c^{2} x^{2}}}+\frac{d(a+b \operatorname{arccsch}(c x))}{e^{2} \sqrt{e x^{2}+d}}+\frac{(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d}}{e^{2}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{x^{3}(a+b \operatorname{arccsch}(c x))}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 45: Unable to integrate problem.

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{x^{2}\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 363 leaves, 7 steps):
$\frac{-a-b \operatorname{arccsch}(c x)}{d x \sqrt{e x^{2}+d}}-\frac{2 e x(a+b \operatorname{arccsch}(c x))}{d^{2} \sqrt{e x^{2}+d}}+\frac{b c^{3} x^{2} \sqrt{e x^{2}+d}}{d^{2} \sqrt{-c^{2} x^{2}} \sqrt{-c^{2} x^{2}-1}}+\frac{b c \sqrt{-c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{d^{2} \sqrt{-c^{2} x^{2}}}$

$$
\begin{gathered}
-\frac{b c^{2} x \sqrt{\frac{1}{c^{2} x^{2}+1}} \sqrt{c^{2} x^{2}+1} \text { EllipticE }\left(\frac{c x}{\sqrt{c^{2} x^{2}+1}}, \sqrt{1-\frac{e}{c^{2} d}}\right) \sqrt{e x^{2}+d}}{d^{2} \sqrt{-c^{2} x^{2}} \sqrt{-c^{2} x^{2}-1} \sqrt{\frac{e x^{2}+d}{d\left(c^{2} x^{2}+1\right)}}} \\
+\frac{2 b e x \sqrt{\frac{1}{c^{2} x^{2}+1}} \sqrt{c^{2} x^{2}+1}}{} \text { EllipticF }\left(\frac{c x}{\sqrt{c^{2} x^{2}+1}}, \sqrt{1-\frac{e}{c^{2} d}}\right) \sqrt{e x^{2}+d} \\
d^{3} \sqrt{-c^{2} x^{2}} \sqrt{-c^{2} x^{2}-1} \sqrt{\frac{e x^{2}+d}{d\left(c^{2} x^{2}+1\right)}}
\end{gathered}
$$

Result(type 8, 23 leaves):

$$
\int \frac{a+b \operatorname{arccsch}(c x)}{x^{2}\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 46: Unable to integrate problem.

$$
\int \frac{x^{5}(a+b \operatorname{arccsch}(c x))}{\left(e x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 213 leaves, 10 steps):
$-\frac{d^{2}(a+b \operatorname{arccsch}(c x))}{3 e^{3}\left(e x^{2}+d\right)^{3 / 2}}+\frac{b x \arctan \left(\frac{\sqrt{e} \sqrt{-c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{e^{5 / 2} \sqrt{-c^{2} x^{2}}}+\frac{8 b c x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{-c^{2} x^{2}-1}}\right) \sqrt{d}}{3 e^{3} \sqrt{-c^{2} x^{2}}}+\frac{2 d(a+b \operatorname{arccsch}(c x))}{e^{3} \sqrt{e x^{2}+d}}$

$$
+\frac{b c d x \sqrt{-c^{2} x^{2}-1}}{3\left(c^{2} d-e\right) e^{2} \sqrt{-c^{2} x^{2}} \sqrt{e x^{2}+d}}+\frac{(a+b \operatorname{arccsch}(c x)) \sqrt{e x^{2}+d}}{e^{3}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{x^{5}(a+b \operatorname{arccsch}(c x))}{\left(e x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 47: Unable to integrate problem.

$$
\int(f x)^{m}\left(e x^{2}+d\right)^{3}(a+b \operatorname{arccsch}(c x)) \mathrm{d} x
$$

Optimal(type 5, 574 leaves, 6 steps):
$\frac{d^{3}(f x)^{1+m}(a+b \operatorname{arccsch}(c x))}{f(1+m)}+\frac{3 d^{2} e(f x)^{3+m}(a+b \operatorname{arccsch}(c x))}{f^{3}(3+m)}+\frac{3 d e^{2}(f x)^{5+m}(a+b \operatorname{arccsch}(c x))}{f^{5}(5+m)}+\frac{e^{3}(f x)^{7+m}(a+b \operatorname{arccsch}(c x))}{f^{7}(7+m)}$

$$
\begin{aligned}
& +\frac{b e\left(e^{2}\left(m^{2}+8 m+15\right)^{2}-3 c^{2} d e(3+m)^{2}\left(m^{2}+13 m+42\right)+3 c^{4} d^{2}\left(m^{4}+22 m^{3}+179 m^{2}+638 m+840\right)\right) x(f x)^{1+m} \sqrt{-c^{2} x^{2}-1}}{c^{5} f(2+m)(3+m)(4+m)(5+m)(6+m)(7+m) \sqrt{-c^{2} x^{2}}} \\
& -\frac{b e^{2}\left(e(5+m)^{2}-3 c^{2} d\left(m^{2}+13 m+42\right)\right) x(f x)^{3+m} \sqrt{-c^{2} x^{2}-1}}{c^{3} f^{3}(4+m)(5+m)(6+m)(7+m) \sqrt{-c^{2} x^{2}}}+\frac{b e^{3} x(f x)^{5+m} \sqrt{-c^{2} x^{2}-1}}{c f^{5}(6+m)(7+m) \sqrt{-c^{2} x^{2}}} \\
& -\frac{1}{c^{5} f(1+m)(2+m)(4+m)(6+m) \sqrt{-c^{2} x^{2}} \sqrt{-c^{2} x^{2}-1}}\left(b \left(\frac{c^{6} d^{3}(2+m)(4+m)(6+m)}{1+m}\right.\right. \\
& \left.-\frac{e(1+m)\left(e^{2}\left(m^{2}+8 m+15\right)^{2}-3 c^{2} d e(3+m)^{2}\left(m^{2}+13 m+42\right)+3 c^{4} d^{2}\left(m^{4}+22 m^{3}+179 m^{2}+638 m+840\right)\right)}{(3+m)(5+m)(7+m)}\right) \\
& \left.x(f x)^{1+m} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right],-c^{2} x^{2}\right) \sqrt{c^{2} x^{2}+1}\right)
\end{aligned}
$$

Result(type 8, 25 leaves):

$$
\int(f x)^{m}\left(e x^{2}+d\right)^{3}(a+b \operatorname{arccsch}(c x)) \mathrm{d} x
$$

Problem 48: Unable to integrate problem.

$$
\int(f x)^{m}\left(e x^{2}+d\right)(a+b \operatorname{arccsch}(c x)) \mathrm{d} x
$$

Optimal(type 5, 206 leaves, 5 steps):
$\frac{d(f x)^{1+m}(a+b \operatorname{arccsch}(c x))}{f(1+m)}+\frac{e(f x)^{3+m}(a+b \operatorname{arccsch}(c x))}{f^{3}(3+m)}+\frac{b e x(f x)^{1+m} \sqrt{-c^{2} x^{2}-1}}{c f\left(m^{2}+5 m+6\right) \sqrt{-c^{2} x^{2}}}$

$$
+\frac{b\left(e(1+m)^{2}-c^{2} d(2+m)(3+m)\right) x(f x)^{1+m} \operatorname{hypergeom}\left(\left[\frac{1}{2}, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right],-c^{2} x^{2}\right) \sqrt{c^{2} x^{2}+1}}{c f(1+m)^{2}(2+m)(3+m) \sqrt{-c^{2} x^{2}} \sqrt{-c^{2} x^{2}-1}}
$$

Result(type 8, 23 leaves):

$$
\int(f x)^{m}\left(e x^{2}+d\right)(a+b \operatorname{arccsch}(c x)) \mathrm{d} x
$$

Test results for the 23 problems in "7.6.2 Inverse hyperbolic cosecant functions.txt"
Problem 3: Unable to integrate problem.

$$
\int(f x+e)^{3}(a+b \operatorname{arccsch}(d x+c))^{2} \mathrm{~d} x
$$

Optimal(type 4, 551 leaves, 20 steps):
$\frac{b^{2} f^{2}(-c f+e d) x}{d^{3}}+\frac{b^{2} f^{3}(d x+c)^{2}}{12 d^{4}}-\frac{(-c f+e d)^{4}(a+b \operatorname{arccsch}(d x+c))^{2}}{4 d^{4} f}+\frac{(f x+e)^{4}(a+b \operatorname{arccsch}(d x+c))^{2}}{4 f}$

$$
-\frac{2 b f^{2}(-c f+e d)(a+b \operatorname{arccsch}(d x+c)) \operatorname{arctanh}\left(\frac{1}{d x+c}+\sqrt{1+\frac{1}{(d x+c)^{2}}}\right)}{A^{A}}
$$

$+\frac{4 b(-c f+e d)^{3}(a+b \operatorname{arccsch}(d x+c)) \operatorname{arctanh}\left(\frac{1}{d x+c}+\sqrt{1+\frac{1}{(d x+c)^{2}}}\right)}{d^{4}}-\frac{b^{2} f^{3} \ln (d x+c)}{3 d^{4}}+\frac{3 b^{2} f(-c f+e d)^{2} \ln (d x+c)}{d^{4}}$
$-\frac{b^{2} f^{2}(-c f+e d) \operatorname{polylog}\left(2,-\frac{1}{d x+c}-\sqrt{1+\frac{1}{(d x+c)^{2}}}\right)}{d^{4}}+\frac{2 b^{2}(-c f+e d)^{3} \operatorname{polylog}\left(2,-\frac{1}{d x+c}-\sqrt{1+\frac{1}{(d x+c)^{2}}}\right)}{d^{4}}$
$+\frac{b^{2} f^{2}(-c f+e d) \operatorname{polylog}\left(2, \frac{1}{d x+c}+\sqrt{1+\frac{1}{(d x+c)^{2}}}\right)}{d^{4}}-\frac{2 b^{2}(-c f+e d)^{3} \operatorname{polylog}\left(2, \frac{1}{d x+c}+\sqrt{1+\frac{1}{(d x+c)^{2}}}\right)}{d^{4}}$
$-\frac{b f^{3}(d x+c)(a+b \operatorname{arccsch}(d x+c)) \sqrt{1+\frac{1}{(d x+c)^{2}}}}{3 d^{4}}+\frac{3 b f(-c f+e d)^{2}(d x+c)(a+b \operatorname{arccsch}(d x+c)) \sqrt{1+\frac{1}{(d x+c)^{2}}}}{d^{4}}$

Result (type 8, 22 leaves):

$$
\int(f x+e)^{3}(a+b \operatorname{arccsch}(d x+c))^{2} \mathrm{~d} x
$$

Problem 4: Unable to integrate problem.

$$
\int(a+b \operatorname{arccsch}(d x+c))^{2} \mathrm{~d} x
$$

Optimal(type 4, 120 leaves, 8 steps):
$\frac{(d x+c)(a+b \operatorname{arccsch}(d x+c))^{2}}{d}+\frac{4 b(a+b \operatorname{arccsch}(d x+c)) \operatorname{arctanh}\left(\frac{1}{d x+c}+\sqrt{\left.1+\frac{1}{(d x+c}\right)^{2}}\right)}{d}$

$$
+\frac{2 b^{2} \operatorname{polylog}\left(2,-\frac{1}{d x+c}-\sqrt{1+\frac{1}{(d x+c)^{2}}}\right)}{d}-\frac{2 b^{2} \operatorname{polylog}\left(2, \frac{1}{d x+c}+\sqrt{1+\frac{1}{(d x+c)^{2}}}\right)}{d}
$$

Result (type 8, 14 leaves):

$$
\int(a+b \operatorname{arccsch}(d x+c))^{2} \mathrm{~d} x
$$

Problem 8: Unable to integrate problem.

$$
\int \frac{\operatorname{arccsch}(\sqrt{x})}{x} \mathrm{~d} x
$$

Optimal (type 4, 48 leaves, 7 steps):

$$
\operatorname{arccsch}(\sqrt{x})^{2}-2 \operatorname{arccsch}(\sqrt{x}) \ln \left(1-\left(\frac{1}{\sqrt{x}}+\sqrt{1+\frac{1}{x}}\right)^{2}\right)-\operatorname{polylog}\left(2,\left(\frac{1}{\sqrt{x}}+\sqrt{1+\frac{1}{x}}\right)^{2}\right)
$$

Result(type 8, 10 leaves):

$$
\int \frac{\operatorname{arccsch}(\sqrt{x})}{x} \mathrm{~d} x
$$

Problem 10: Unable to integrate problem.

$$
\int \frac{\operatorname{arccsch}\left(a x^{n}\right)}{x} \mathrm{~d} x
$$

Optimal(type 4, 87 leaves, 7 steps):

$$
\frac{\operatorname{arccsch}\left(a x^{n}\right)^{2}}{2 n}-\frac{\operatorname{arccsch}\left(a x^{n}\right) \ln \left(1-\left(\frac{1}{a x^{n}}+\sqrt{1+\frac{1}{a^{2}\left(x^{n}\right)^{2}}}\right)^{2}\right)}{n}-\frac{\operatorname{polylog}\left(2,\left(\frac{1}{a x^{n}}+\sqrt{1+\frac{1}{a^{2}\left(x^{n}\right)^{2}}}\right)^{2}\right)}{2 n}
$$

Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{arccsch}\left(a x^{n}\right)}{x} \mathrm{~d} x
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{\frac{1}{a x}+\sqrt{1+\frac{1}{a^{2} x^{2}}}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 53 leaves, 6 steps):

$$
-\frac{1}{4 a x^{4}}+\frac{a^{3} \operatorname{arccsch}(a x)}{8}-\frac{\sqrt{1+\frac{1}{a^{2} x^{2}}}}{4 x^{3}}-\frac{a^{2} \sqrt{1+\frac{1}{a^{2} x^{2}}}}{8 x}
$$

Result(type 3, 172 leaves):
$\frac{\left.\sqrt{\frac{a^{2} x^{2}+1}{a^{2} x^{2}}} a^{2}\left(\left(\frac{a^{2} x^{2}+1}{a^{2}}\right)^{3 / 2} \sqrt{\frac{1}{a^{2}}} x^{2} a^{2}-\sqrt{\frac{a^{2} x^{2}+1}{a^{2}}} \sqrt{\frac{1}{a^{2}} x^{4} a^{2}+\ln \left(\frac{2\left(\sqrt{\frac{1}{a^{2}} \sqrt{\frac{a^{2} x^{2}+1}{a^{2}}} a^{2}+1}\right.}{x a^{2}}\right)} \sqrt{8 \sqrt{\frac{a^{2} x^{2}+1}{a^{2}}} \sqrt{\frac{1}{a^{2}}}} \text { (} \frac{a^{2} x^{2}+1}{a^{2}}\right)^{3 / 2} \sqrt{\frac{1}{a^{2}}}\right)}{}$ $-\frac{1}{4 a x^{4}}$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int\left(\frac{1}{a x^{2}}+\sqrt{1+\frac{1}{a^{2} x^{4}}}\right) x^{3} \mathrm{~d} x
$$

Optimal(type 3, 42 leaves, 6 steps):

$$
\frac{x^{2}}{2 a}+\frac{\operatorname{arctanh}\left(\sqrt{1+\frac{1}{a^{2} x^{4}}}\right)}{4 a^{2}}+\frac{x^{4} \sqrt{1+\frac{1}{a^{2} x^{4}}}}{4}
$$

Result(type 3, 93 leaves):

$$
\frac{\sqrt{\frac{a^{2} x^{4}+1}{a^{2} x^{4}}} x^{2}\left(x^{2} \sqrt{\frac{a^{2} x^{4}+1}{a^{2}}} a^{2}+\ln \left(x^{2}+\sqrt{\frac{a^{2} x^{4}+1}{a^{2}}}\right)\right)}{4 \sqrt{\frac{a^{2} x^{4}+1}{a^{2}}} a^{2}}+\frac{x^{2}}{2 a}
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int\left(\frac{1}{a x^{2}}+\sqrt{1+\frac{1}{a^{2} x^{4}}}\right) x \mathrm{~d} x
$$

Optimal(type 3, 34 leaves, 6 steps):

$$
-\frac{\operatorname{arccsch}\left(a x^{2}\right)}{2 a}+\frac{\ln (x)}{a}+\frac{x^{2} \sqrt{1+\frac{1}{a^{2} x^{4}}}}{2}
$$

Result(type 3, 115 leaves):

$$
\frac{\sqrt{\frac{a^{2} x^{4}+1}{a^{2} x^{4}}} x^{2}\left(\sqrt{\frac{1}{a^{2}}} \sqrt{\frac{a^{2} x^{4}+1}{a^{2}}} a^{2}-\ln \left(\frac{2\left(\sqrt{\frac{1}{a^{2}}} \sqrt{\frac{a^{2} x^{4}+1}{a^{2}}} a^{2}+1\right)}{x^{2} a^{2}}\right)\right)}{2 \sqrt{\frac{1}{a^{2}}} \sqrt{\frac{a^{2} x^{4}+1}{a^{2}}} a^{2}}+\frac{\ln (x)}{a}
$$

Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{\frac{1}{a x^{2}}+\sqrt{1+\frac{1}{a^{2} x^{4}}}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 34 leaves, 6 steps):

$$
-\frac{1}{4 a x^{4}}-\frac{a \operatorname{arccsch}\left(a x^{2}\right)}{4}-\frac{\sqrt{1+\frac{1}{a^{2} x^{4}}}}{4 x^{2}}
$$

Result(type 3, 113 leaves):

$$
-\frac{\sqrt{\frac{a^{2} x^{4}+1}{a^{2} x^{4}}}\left(\ln \left(\frac{2\left(\sqrt{\frac{1}{a^{2}}} \sqrt{\frac{a^{2} x^{4}+1}{a^{2}}} a^{2}+1\right)}{x^{2} a^{2}}\right) x^{4}+\sqrt{\frac{1}{a^{2}}} \sqrt{\frac{a^{2} x^{4}+1}{a^{2}}}\right)}{4 x^{2} \sqrt{\frac{a^{2} x^{4}+1}{a^{2}}} \sqrt{\frac{1}{a^{2}}}}-\frac{1}{4 a x^{4}}
$$

Problem 18: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(\frac{1}{a x}+\sqrt{1+\frac{1}{a^{2} x^{2}}}\right)^{2}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 59 leaves, 7 steps):

$$
-\frac{1}{2 a^{2} x^{4}}-\frac{1}{2 x^{2}}+\frac{a^{2} \operatorname{arccsch}(a x)}{4}-\frac{\sqrt{1+\frac{1}{a^{2} x^{2}}}}{2 a x^{3}}-\frac{a \sqrt{1+\frac{1}{a^{2} x^{2}}}}{4 x}
$$

Result(type 3, 175 leaves):

$$
-\frac{1}{2 x^{2}}-\frac{1}{2 a^{2} x^{4}}
$$

$$
\begin{aligned}
& +\frac{1}{4 x^{3} \sqrt{\frac{a^{2} x^{2}+1}{a^{2}}} \sqrt{\frac{1}{a^{2}}}}\left(a \sqrt { \frac { a ^ { 2 } x ^ { 2 } + 1 } { a ^ { 2 } x ^ { 2 } } } \left(\left(\frac{a^{2} x^{2}+1}{a^{2}}\right)^{3 / 2} \sqrt{\frac{1}{a^{2}}} x^{2} a^{2}-\sqrt{\frac{a^{2} x^{2}+1}{a^{2}}} \sqrt{\frac{1}{a^{2}}} x^{4} a^{2}\right.\right. \\
& \left.\left.+\ln \left(\frac{2\left(\sqrt{\frac{1}{a^{2}}} \sqrt{\frac{a^{2} x^{2}+1}{a^{2}}} a^{2}+1\right)}{x a^{2}}\right) x^{4}-2\left(\frac{a^{2} x^{2}+1}{a^{2}}\right)^{3 / 2} \sqrt{\frac{1}{a^{2}}}\right)\right)
\end{aligned}
$$

Problem 19: Unable to integrate problem.

$$
\int \frac{\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)(d x)^{m}}{c^{2} x^{2}+1} \mathrm{~d} x
$$

Optimal(type 5, 75 leaves, 4 steps):

$$
-\frac{d(d x)^{-1+m} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}\right],\left[\frac{3}{2}-\frac{m}{2}\right],-\frac{1}{c^{2} x^{2}}\right)}{c^{2}(1-m)}+\frac{(d x)^{m} \text { hypergeom }\left(\left[1, \frac{m}{2}\right],\left[1+\frac{m}{2}\right],-c^{2} x^{2}\right)}{c m}
$$

Result(type 8, 38 leaves):

$$
\int \frac{\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)(d x)^{m}}{c^{2} x^{2}+1} \mathrm{~d} x
$$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}\right) x}{c^{2} x^{2}+1} \mathrm{~d} x
$$

Optimal(type 3, 25 leaves, 5 steps):

$$
\frac{\arctan (c x)}{c^{2}}+\frac{\operatorname{arctanh}\left(\sqrt{1+\frac{1}{c^{2} x^{2}}}\right)}{c^{2}}
$$

Result(type 3, 84 leaves):

$$
\frac{\sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} x \ln \left(x+\sqrt{-\frac{\left(-c^{2} x+\sqrt{-c^{2}}\right)\left(c^{2} x+\sqrt{-c^{2}}\right)}{c^{4}}}\right)}{\sqrt{\frac{c^{2} x^{2}+1}{c^{2}}} c^{2}}+\frac{\arctan (c x)}{c^{2}}
$$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int \frac{\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}}{c^{2} x^{2}+1} \mathrm{~d} x
$$

Optimal (type 3, 31 leaves, 7 steps):

$$
-\frac{\operatorname{arccsch}(c x)}{c}+\frac{\ln (x)}{c}-\frac{\ln \left(c^{2} x^{2}+1\right)}{2 c}
$$

Result(type 3, 171 leaves):

$$
\frac{\sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}} x\left(\sqrt{\frac{1}{c^{2}}} \sqrt{\frac{c^{2} x^{2}+1}{c^{2}}} c^{2}-\sqrt{-\frac{\left(-c^{2} x+\sqrt{-c^{2}}\right)\left(c^{2} x+\sqrt{-c^{2}}\right)}{c^{4}}} c^{2} \sqrt{\frac{1}{c^{2}}}-\ln \left(\frac{2\left(\sqrt{\frac{1}{c^{2}} \sqrt{\frac{c^{2} x^{2}+1}{c^{2}}} c^{2}+1}\right)}{\sqrt{\frac{1}{c^{2}}} \sqrt{\frac{c^{2} x^{2}+1}{c^{2}}} c^{2}}\right)\right.}{2 c}-\frac{\ln \left(c^{2} x^{2}+1\right)}{2 c}
$$

$$
+\frac{\ln (x)}{c}
$$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int \frac{\frac{1}{c x}+\sqrt{1+\frac{1}{c^{2} x^{2}}}}{x\left(c^{2} x^{2}+1\right)} \mathrm{d} x
$$

Optimal(type 3, 28 leaves, 4 steps):

$$
-\frac{1}{c x}-\arctan (c x)-\sqrt{1+\frac{1}{c^{2} x^{2}}}
$$

Result(type 3, 153 leaves):

$$
-\frac{\sqrt{\frac{c^{2} x^{2}+1}{c^{2} x^{2}}}\left(c^{2}\left(\frac{c^{2} x^{2}+1}{c^{2}}\right)^{3 / 2}-c^{2} x^{2} \sqrt{\frac{c^{2} x^{2}+1}{c^{2}}}+\ln \left(x+\sqrt{-\frac{\left(-c^{2} x+\sqrt{-c^{2}}\right)\left(c^{2} x+\sqrt{-c^{2}}\right)}{c^{4}}}\right) x-\ln \left(x+\sqrt{\frac{c^{2} x^{2}+1}{c^{2}}}\right) x\right)}{\sqrt{\frac{c^{2} x^{2}+1}{c^{2}}}}-\arctan (c x)
$$

$$
-\frac{1}{c x}
$$

Summary of Integration Test Results

71 integration problems

A - 28 optimal antiderivatives
B - 16 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 27 unable to integrate problems
E - O integration timeouts

